

Building Life-Cycle Assessment

Weimin Wang, Ph.D., Associate Professor University of North Carolina at Charlotte

September 5, 2023

In the U.S., the building sector accounts for

- 41% of total energy consumption
- 35% of energy-related carbon emissions
- 25% 45% of solid waste by mass

Sources:

IEA (2022), <u>https://www.iea.org/reports/buildings</u>

EIA (2022), <u>https://www.eia.gov/energyexplained/use-of-energy/</u>

Building and Environment

On average, people spend 90% of their time in buildings.

- Comfort
- Health
- Productivity

Green Building Innovation Program

Education

- Curricula Development
 - Bioclimatic Design
 - Building Life-Cycle Assessment
 - Selected HVAC Systems
 - Carbon-Neutral Design
 - Sustainable Façade Design
 - Resiliency in the Built Environment
 - Others
- Lectures
- Training Workshops

Research

- Co-develop and co-implement research projects with our ASEAN partners
- Co-authorize conference and journal articles
- Develop joint research proposals

Knowledge Sharing

- Project website (greenbuilding.charlotte.edu)
- Publications
- Presentations at conferences and workshops

Building Life Cycle Stages

- https://sftool.gov/plan/399/life-cycle-perspective-

Life-Cycle Assessment (LCA)

LCA is an approach to compile and evaluate the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle.

System Boundary

LCA Components

Source: EPA (2006)

Goal and Scope Definition

Purpose of Assessment

- Design improvement
- Comparison
- Declaration
- Rating and standard compliance (e.g., LEED)

Object of Assessment

- Product
- Assembly
- System
- Whole Building

System Boundary

- Cradle to Gate (A1-A3)
- Cradle to Grave (A1-A5, B1-B7, and C1-C4)
- Cradle to Cradle (A1-A5, B1-B7, C1-C4, and D)

Proc	duc	t S	ta
(/	A1 ·	- A	3)
по	Î		

Raw Materials Extra

A2: Transport

2 Inventory Analysis

- An inventory of all inputs to and outputs from the production system is prepared
 - Inputs: energy, non-energy resources
 - Outputs: emissions to atmosphere, water and soil
- The most resource-intensive process of LCA
- Life-Cycle Inventory (LCI) Databases
 - Usually for unit processes
 - Be specific to countries and regions
 - Specific manufacturer vs. Industry average

U.S. Life-Cycle Inventory Database: https://www.lcacommons.gov/lca-collaboration

Collaborating Agencies

Impact Assessment

Evaluate the potential human health and environmental impacts of the inputs & outputs identified from the LCI analysis.

- Impact category selection and definition
- Classification
- Characterization
- Normalization (optional)
- Grouping (optional)
- Weighting (optional)

Impact Categories

- Global Warming
- Ozone Depletion
- Acidification
- Eutrophication
- Smog Formation

- Human Health
- Ecotoxicity
- Fossil Fuel Use
- Land Use
- Water Use

Source: EPA TRACI 2.1 (2012)

Classification

- Organize and combine LCI results into impact categories.
- An LCI item may contribute to one or multiple impact categories.
- Example: Global Warming
 - \circ Carbon dioxide (CO₂)
 - \circ Methane (CH₄)
 - \circ Nitrous oxides (N₂O)
 - o CFC's
 - HCFC's

- HFC's
- Halons

- 0 ...

 \circ Tetrachloromethane (CCI₄)

 \circ 1,1,1-Trichloroethane (CCl₃CH₃)

Source: EPA TRACI 2.1 (2012)

Characterization

- Use characterization factors (equivalency factors) to convert and combine LCI results into representative indicators of impact to human and ecological health.
- Make it possible to compare the LCI results within each impact category.
- Example: Global Warming Potential (GWP)
 - GWP measures how much energy the emissions of 1 ton of a greenhouse gas will absorb over a given period of time, relative to the emissions of 1 ton of CO_2 . $\rightarrow CO_2$ Equivalent

Greenhouse Gas	GWP100
CO ₂	1
CH ₄	27.9
N ₂ O	273

Source: IPCC (2021)

EPA's TRACI (Partly Shown)

CAS # Formatted CAS #		Substance Name	Global Warming Air (kg CO2 eq / kg substance)	Acidification Air (kg SO2 eq / kg substance)	HH Particulate Air (PM2.5 eq / kg substance)	Eutrophication Air (kg N eq / kg substance)	Eutrophication Water (kg N eq / kg substance)	
7723140	7723-14-0 PHOSF	HORUS	0.00E+00	0.00E+00	0.00E+00	1.12E+00	7.29E+00	
x	x PHOSF	HORUS PENTOXIDE	0.00E+00	0.00E+00	0.00E+00	4.90E-01	3.19E+00	
14265442	14265-44-2 PHOSF	HATE	0.00E+00	0.00E+00	0.00E+00	3.66E-01	2.38E+00	
7664382	7664-38-2 PHOSF	HORICACID	0.00E+00	9.80E-01	0.00E+00	3.55E-01	2.31E+00	
17778880	17778-88-0 NITRO	GEN	0.00E+00	0.00E+00	0.00E+00	1.50E-01	9.86E-01	
14798039	14798-03-9 AMMO	NUM	0.00E+00	0.00E+00	0.00E+00	1.19E-01	7.79E-01	
7664417	7664-41-7 AMMO	NIA	0.00E+00	1.88E+00	6.67E-02	1.19E-01	7.79E-01	
10102439	10102-43-9 NITRIC	OXIDE	0.00E+00	1.07E+00	0.00E+00	6.86E-02	4.51E-01	
10102440	10102-44-0 NITRO	GEN DIOXIDE	0.00E+00	7.00E-01	7.22E-03	4.43E-02	2.91E-01	
х	x NITRO	GEN OXIDES	0.00E+00	7.00E-01	7.22E-03	4.43E-02	2.91E-01	
14797558	14797-55-8 NITRA	E	0.00E+00	0.00E+00	0.00E+00	3.60E-02	2.37E-01	
7697372	7697-37-2 NITRIC	ACID	0.00E+00	5.10E-01	0.00E+00	3.45E-02	2.27E-01	
x	x BIOLO	GICAL OXYGEN DEMAND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.00E-02	
x	x CHEMI	CAL OXYGEN DEMAND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.00E-02	
2551624	2551-62-4 SULFU	R HEXAFLUORIDE	2.28E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
X	x TRIFLU	IOROMETHYL SULFUR PENTAFLUORIDE	1.77E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
X	x PROPA	NE, PERFLUOROCYCLO-	1.73E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
7783542	7783-54-2 NITRO	GEN TRIFLUORIDE	1.72E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
3822682	3822-68-2 HFE-12	5	1.49E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
75467	75-46-7 HFC-23		1.48E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
75729	75-72-9 CFC-13	3	1.44E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
76164	76-16-4 PFC-11	6	1.22E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
75718	75-71-8 CFC-12		1.09E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traci

Interpretation

- Present LCA results in a most informative way
- Analyze results
- Reach conclusions
- Explain limitations
- Provide recommendations

15

Representative Building LCA Tools

- Embodied Carbon in Construction Calculator (EC3) Tool https://buildingtransparency.org/ec3
- BEES Online 2.1 building products https://ws680.nist.gov/Bees2
- https://calculatelca.com/software/impact-estimator/

EC3 Tool

- An EPD (Environmental Product Declaration) is a public, verified report that documents a product's life cycle environment impacts based on LCA.
- Compliance with ISO Standard 14025.
- Adherence to the appropriate industry-standard Product Category Rules (PCRs), specifying how the LCA should be conducted.
- Third party certification of the LCA process.

Environmental Facts Functional unit: 1 m ² of Ceramic Tile Floor Covering Reference Service Life (RSL): 60 Years				
Life Cycle Inventory Analysis				
Energy Demand				
Primary Renewable (MJ)	10.4			
Primary Non-Renewable (MJ)	225			
Secondary Renewable (MJ)	0.15			
Secondary Non-Renewable (MJ)	1.4			
Non-Renewable Material Sources (kg)	51			
Waste Output				
Non-Hazardous (kg)	41			
Hazardous (kg)	0.0028			
60 Year Impact Assessment				
Global Warming Potential (kg CO ₂ eq)	15			
Acidification Potential (kg SO ₂ eq)	0.0565			
Ozone Depletion Potential (kg R11 eq)	8.11E-10			
Smog Potential (kg Ethene eq)	0.0052			
Eutrophication Potential (kg Phosphate eq)	0.00604			
Abiotic Depletion Potential - Elemental (kg Sb eq)	1.22E-05			
Abiotic Depletion Potential - Fossil (MJ)	219			
Boundaries: Cradle to Grave	Clay: 70.3%			
Company: North American Tile Manufacturers	Quartz: 4.8%			
Product Name: North American-Made Ceramic Tile	Feldspar: 5.3%			
Recycled Content: Wide Percentage Range	Scrap: 4.2%			
Certification: Some Tiles Green Squared Certified®	Kaolin: 3.2%			
Other Attributes: Zero VOCs	Granite: 1.3%			
	Lime: 1.1%			
	Glaze & Stain: 5.4%			
	Other Minerals: 4.0%			

EC3 Tool

EC3 Tool

Major Group Element	Group Element	Individ
Building sitework	Site improvements	Parking
Substructure	Foundations	Slab on
Substructure	Basement construction	Baseme
	Superstructure	Beams, and slat
Shell	Roofing	Roof co
	Exterior Enclosure	Wall ins
Intoriore	Interior finishes	Floor co
	Interior construction	Partitior

ual Element

- lot paving
- grade
- ent walls
- columns, roof sheathing, floor decks
- overings, roof coatings, ceiling
- on
- sulation, wall sheathing
- overings, wall finishes, ceiling finishes

Parameter	Selection Value
Product Category	Floor Coverings
Additional Restriction	Application: residential Type: N/A Sub-Type: N/A Certification: N/A
Analysis Basis	All
Impact Method	TRACI 2
Do Environmental Impact Score	NO
Impact Category Weights	N/A
Product Amount	1.0
Do Enconomic Analysis	YES
Discount Rate	3 %
CO2 Cost (\$/Ton)	N/A

Global Warming Potential (undefined)

ATHENA Impact Estimator for Buildings

ATHENA Impact Estimator for Buildings

By Assembly Groups

By Life Cycle Stages

LCA Measures Unit		Foun	Foundations Walls		Valls	Columns and Roofs Beams		s	Floors		Project Mate	t Extra rials		Total						
Global Warming Poten	tial	kg C	02 eq		0.00E+00		2.06E+03 -3.06E+03		0.0	.00E+00 0		.00E+00		4.29E+05		4.28E+05				
Acidification Potential		kg S	SO2 eq 0.00E+00		0.00E+00	3.91E+01		1.45E+01	0.00E+00		0.00E+00		1.83E+03		+03 1.88E+03					
HH Particulate		kg PN	12.5 eq		0.00E+00 9.72E		9.72E+00	1.78E+01	0.00E+00		0.00E+00		5.41 E+02		+02 5.68E+02					
Eutrophication Potentia		kg	N eq		0.00E+00		2.27E+00	2.02E+00	0.0	0.00E+00 0.		.00E+00		5.70E+02		5.74E+02				
Ozone Depletion Poten	etion Potential kg CFC-11 ed		C-11 eq		0.00E+00		7.34E-05	3.40E-04	0.0	0E+00 0.		.00E+00	1.02E-0)2	1.06E-02				
PR (At		bDUCT to A3)	CONSTRUCT PROCESS (A4 & A5	rion s ș)		USE (B2, B4 & B6)		END (C1	OFLIFE toC4)	BEY BUILDI (I	OND NG LIFE D)		TOTAL	EFFECTS						
LCA Measures		Unit	т	otal	Total		Replacement Total	Operational Energy Use Total	Total	٦	otal To		tal	A	to C	A to D				
Global Warming Potential	kg	CO2 eq		3.41E+05	7.80)E+04	1.54E+03	1.66E+06	1.67E+06		1.46E+04	-6.29E+03		-6.29E+03		:	2.10E+06	i 2.09E+00		
Acidification Potential	kg	SO2 eq		1.19E+03	4.98	8E+02	1.36E+01	1.12E+04	1.12E+04		1.79E+02	1.79E+02		-8.01E-01		-8.01E-01			1.31E+04	1.31E+04
HH Particulate	kg i	PM2.5 eq		4.78E+02	8.09	E+01	4.11E+00	1.99E+03	2.00E+03		6.25E+00	-3.51E-01		01 2.56E+03		2.56E+03				
Eutrophication Potential	rophication Potential kg N eq		4.72E+02	9.06	iE+01	6.85E-01	5.30E+02	5.30E+02		1.12E+01 -4.12E-02		4.12E-02 1.10E		1.10E+03	\$ 1.10E+03					
Ozone Depletion Potential	Depletion Potential kg CFC-11 eq		9.26E-03	1.34	4E-03	4.45E-05	3.95E-02	3.96E-02	.96E-02 5.81E-07 0.00E+0		0.00E+00	0 5.02E-02		2 5.02E-02						
Smog Potential	kç	g O3 eq	2.17E+04		1.38	8E+04	1.69E+02	3.63E+04	3.65E+04	5.85E+03		5.85E+03		:	7.78E+04	7.78E+04				
Total Primary Energy		MJ		2.92E+06	8.31	E+05	2.20E+04	2.88E+07	2.88E+07		2.15E+05	2.15E+05 -1.		1.60E+03 3		3.27E+07				
Non-Renewable Energy		M1		2.76E+06	8.10	E+05	1 74E+04	2 86E+07	2.86E+07		2.15E+05	2.15E+05		.60E+03 3.24		3.24E+02				

Thank You!

Sponsor: U.S. Department of State

U.S.-ASEAN SMART USASCP CITIES PARTNERSHIP

Contact:

Weimin Wang

Email: weimin.wang@charlotte.edu