The Bioenergy and Bioprocessing Technology Laboratory: Intersection of Renewable Energy, Waste Treatment, and Human Health

Photo: Wastewater digesters in Haiti, funded by USAID and NSF grants

Stephanie Lansing

Professor and Associate Chair Director of the Bioenergy and Bioprocessing Technology Lab Department of Environmental Science & Technology University of Maryland, College Park slansing@umd.edu

Bioenergy and Bioprocessing Technology Lab Overview

1. Innovations in the Food-Ag Circular Economy

- Food waste, MSW, and algae digestion with nutrient recovery post-digestion, and Life Cycle Assessments (LCA) of the overall processes
- 2. Innovations in Digestion and Fermentation
 - Nanotechnology, electrochemistry, biochar, and bioplastic production from fermentation products.
- 3. Reducing Antimicrobial Resistance through Integration of Engineering, Public Health, and Social Science
 - Manure and biosolids treatment, social science, communication, and teaching

What is the Circular Economy in the Food System?

Regenerative Food Production

- A food system that builds natural capital and generate positive outcomes for nature, such as healthy and stable soils, improved local biodiversity, improved air and water quality.
 - Local practices could include diverse crop varieties and cover crops, rotational grazing, organic-based fertilizers, and agroforestry to build agricultural systems in a way that more mimic natural systems and bring nutrients into circular system.

Eliminating Food Waste

- Prevents food waste, redistribute edible food to people who need it, and recycle inedible food by-products into inputs for new products through composting, anaerobic digestion, or other value-added products.
- Food waste added to landfills emit CH₄, 25x more powerful than CO₂.

MORE THAN JUST FOOD

THE U.S. WASTES TONS OF RESOURCES WHEN WE WASTE FOOD

1,250 CALORIES PER PERSON PER DAY THAT IS HALF OF THE RECOMMENDED DAILY INTAKE FOR ADULTS

19% OF ALL U.S. CROPLANDS THAT IS MORE LAND THAN ALL OF NEW MEXICO

18% OF ALL FARMING FERTILIZER WHICH CONTAINS 3.9 BILLION POUNDS OF NUTRIENTS

\$218,000,000,000

WHICH IS EQUAL TO 1.3% OF THE U.S. GROSS DOMESTIC PRODUCT (GDP)

2.6% OF ALL U.S. GREENHOUSE GAS EMISSIONS ANUALLY

37 MILLION PASSENGER VEHICLES' WORTH

21% OF THE U.S. AGRICULTURAL WATER USAGE

MORE THAN: TEXAS + CALIFORNIA + OHIO

Anaerobic digestion could be used as pillar in a circular food economy by creating renewable energy (electricity, heat, or renewable natural gas) from carbon in food waste, manures, while preserving the nutrients for further crop growth in order to reduce GHG emissions from fossil fuel use from energy use and fertilizer production.

Figure from: "Governance of Environmental Sustainability of manure-based centralised biogas production in Denmark" IEA Bioenergy 2018. Available at: https://www.ieabioenergy.com/blog/publications/governance-of-environmental-sustainability-of-manure-based-centralised-biogas-production-indenmark/

- Covered lagoon digester in Cecil County, MD
- Food processing waste (≈ 2500 gal/day) from cranberry, ice cream and chicken processing digested with flushed dairy manure from 450 cows (64,000 gal/day)

 Food waste increased biogas production from 38% (ice cream) to 398% (chicken).

 For food waste, 58 to 85% of the gas was produced in the first 12 days, while manure only had 39% of its gas total in this time.

Prior Study: Food Waste Co-digestion at a German Farm

- Food waste increased gas production by 434% and maize silage by 276% compared to only digesting manure.
- Food waste and silage had 85-89% of the cumulative CH₄ in the first 14 days compared to fresh manure with only 53% of CH₄ in this time.
- 71% of the gas was due to food waste, which was a minority of the digester volume (5.5 m³ per day).

Food Waste Digestion – Individual Collection

Innovations in Anaerobic Digestion

- 1. Nanoparticles (NP) to increase biogas, with NP process tracking
 - New method for nanoparticle extraction from digestate

2. Microbial electrolysis cells (MEC) & Electrocoagulation

- MECs to increase methane content in digesters
- Using fermentation and MECs to create bioplastics from food waste
- Electrocoagulation to increase water quality for water reuse
- **3. Biochar** to remove H₂S and increase CH₄ in biogas
 - Biochar to improve anaerobic digestion
 - Biochar to increase plant growth and pollutant absorption

4. Small-Scale to Large-Scale Digesters

- Freeze-dried inoculum to start digesters in remote locations
- > 99% reductions in pathogens using wastewater digesters in Haiti
- Designed small-scale digester design for varying climates
- Large-scale, food waste co-digestion systems in Germany and the US

Lab-based Digesters

Digesters inside the lab range from 250 mL to 10 L digesters. Outside the lab, range from indoor 200 L digesters to 1 to 3 m³ outside digesters.

Example Biogas Potential Testing

- Food processing waste (≈ 2500 gal/day) from cranberry, ice cream, chicken and meatball processing digested with flushed dairy manure from 450 cows (64,000 gal/day)
- Food waste increased gas production from 38% (ice cream) to 398% (chicken)
- For food waste, 58 to 85% of the gas was produced in the first 12 days, while manure only had 39% of its gas total in this time.

Lisboa and Lansing, 2013 in Waste Management

Maryland Animal Waste Technology Fund Third Party Verification

Mass Balances of Energy, Nutrients and Sustainability

- Farmer Technical Support
- Comparison of biogas in the field to lab conditions
- Mass Balance of Energy (energy to run pumps and biogas production)
- Mass Balance of Nutrients and any Nutrient Reductions
- Monthly Sampling of one year period
- Life Cycle Assessment (LCA) of Sustainability of the whole process

MDA – Animal Waste Technology Fund Evaluation

Post-Digestion Nutrient Extraction

- Ammonium scrubber using counter-current airflow.
- Drives H_2S , CO_2 and NH_3 from the air into liquid solution.
- N-fertilizer is removed and available as a transportable fertilizer.
- Reusable water is produced.
- Biogas is upgraded through partial H_2S and CO_2 removal.

High Tech: Nanoparticles (NP) in Digestion

- Nickle (Ni), Cobalt (Co), Iron (Fe), and Iron Oxide (Fe₃O₄) added at the nano-scale in batch testing.
- Nanoparticle addition increased CH₄ production by 23.7% and temporarily ceased H₂S production, with an average H₂S reduction of 55%.
- Harvested lettuce had 21 to 1,900% more NP uptake, yet these values were well below toxic thresholds.

Hassanein et al., 2020

Algal Turf Scrubber with Anaerobic Digestion and Fuel Cell

Big Ten Network Video on Algae Digestion

MEC-AD Results

- The AD-MEC produced 27% more CH₄ and 1,680% more H₂
- The CO₂ concentration was reduced to 4% (96% CH₄), with 83% less CO₂ accumulated.
- There was 75% more daily CH_4 and H_2 production (0.59 m³/m³/day) compared to the food waste-only treatment (0.34 m³/m³/day).
- Achieved 14% more COD removal than AD-only treatment (83% reduction); at the higher end of COD reduction literature values.

Innovative Polyhydroxyalkanoates (PHA) Production with Microbial Electrochemical Technology (MET) Incorporation for Community-Scale Waste Valorization

DOE funding (\$2.5 million; 2021-2024).

Systematic Characterization of Variability in MSW Streams to Identify Critical Material Attributes for Fuel Production

- Solid State Anaerobic digestion
 Validate MSW characterization methods using 160 representative samples collected from 20 MSW facilities/entities for 3 years across the US.
- Develop statistical and machine learning models based on MSW characterization.
- Use LCA and TEA to determine CO₂ emissions for MSW to energy pathways.

DOE funding (\$4.3 million; 2022-2025).

Biochar in Anaerobic Digestion

- Two types of biochar: corn stover and wood chips.
- Highest biochar additions had up to 90% reduction in H₂S.
- The biochar absorbed the NH₄-N in the effluent, with a 50% NH₄-N reduction.
- Future research to further understand nutrient removal properties.

Choudhury and Lansing, 2019; 2020a, 2020b

Biochar in Anaerobic Digestion Corn stover and maple biochar (CSB and MB) with and without Fe-impregnated biochar (CSB-Fe and MB-Fe). H₂S Reduction 2500 +DMCSB-Fe CSB -MB-Fe *MB 2000 1200 mL H₂S/kg VS 1000 Biochar (CSB and MB) Iron impregnated Biochar (CSB-Fe and MB-Fe) Iron particles 500 20 40 60 80 Days Anaerobic Digestion Results Iron Chloride • Biochar (CSB and MB) had a maximum H_2S solution removal efficiency of 59%. Dairy Manure (DM) • Iron-impregnated biochar (CSB-Fe and MB-Fe) had a maximum H₂S removal efficiency of Additional studies with biochar in cassava waste digestion and biochar 100%. (Achi et al., 2020)

Life Cycle Assessments (LCA)

Environmental impacts of poultry litter combustion compared to liquified propane gas (LPG) and natural gas (NG) production and combustion.

A Technical Reference Guide for **Dairy-Derived Biogas Production, Treatment and Utilization**

By: ¹Tim Shelford, ¹Curt Gooch, ²Abhinav Choudhury, and ²Stephanie Lansing

SARE

Cornell CALS

¹Cornell PRO-DAIRY Dairy Environmental Systems Program ²University of Maryland Department of Environmental Science and Technology

DEPARTMENT OF

ENVIRONMENTAL CIENCE & TECHNOLOGY Available at:

go.umd.edu/FarmerBi ogasHandbook

MARYLAND EXTENSION

Solutions in your community

Anaerobic Digestion Series: Draft

Fact Sheet FS-xxx 2017

Draft

Microaeration for Hydrogen Sulfide Removal in Biogas

Introduction

Anaerobic digestion (AD) is the process of microbial decomposition of organic substances in the absence of oxygen. The biogas produced by AD is composed of methane (50-80%), carbon dioxide (20-50%), and trace levels of water vapor and other gases, such as hydrogen sulfide (H₂S).

H₂S is toxic to humans and corrosive to biogas plumbing and utilization equipment. A concentration of 100 ppm is considered immediately dangerous to life and health by the National Institute for Occupational Safety and Health (NIOSH)¹. Even at low levels (100 ppm), H₂S can cause negative health effects, such as nausea, headaches, and breathing problems, while at higher levels (> 300 ppm), it can cause suffocation¹.

 H_2S is toxic and reactive with metals and cement and is readily converted into SO_2 and H_2SO_4 , which are also highly corrosive. In addition, combustion of H_2S in gas engine generators forms sulfur dioxide (SO_2). results in the production of elemental sulfur as the end-product instead of H₂S in the biogas. This biological desulfurization process does not require chemicals or water inputs, which can be costly to purchase, in addition to the time and cost associated with properly managing the purchasing and disposal of any chemical additions⁴.

Figure 1: A basic representation of In-situ microaeration.

In-situ Microaeration

Acknowledgements **Laboratory Group Members**

Dr. Stephanie Lansing Professor Principal investigator

Dr. Amro Hassanein Assistant scientist Lab Manager

Danielle Delp

ENST

Ph.D. Candidate

Derrick Sanders

Undergraduate

Student

Usoshi Chatterjee Ph.D. Student ENST

Emily McCoy Undergraduate Student

United States Department of Agriculture National Institute of Food and Agriculture

Kirk Mahoney Masters student ENST

Carlton Poindexter

Ph.D. Candidate

ENST

Olivia Robinson Undergraduate Student

Mandy Zhang High school

Student

Briana Mercado Undergraduate Student

Dahlia Andres Undergraduate Student

D STATES OF

MARYLAND DEPARTMENT OF TRANSPORTATION

> MARYLAND AVIATION ADMINISTRATION

Maryland Industrial **Partnerships**

Questions?