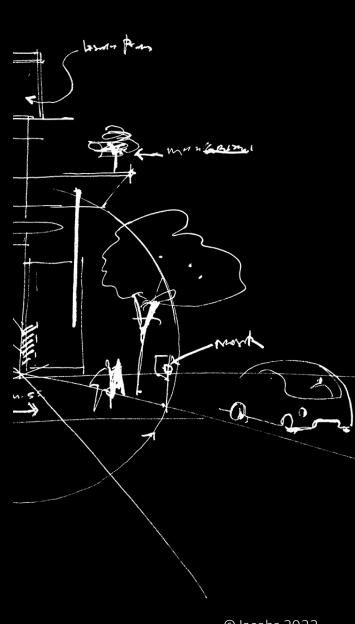


Challenging today. Reinventing tomorrow.

Sustainable Data Centres


Debbie Seibold Egeland

1 September 2022

©Jacobs 2022

Contents

- Sustainable DCs start with Corporate Commitments (ESG)
- Sustainable DC Best Practice
 - Sustainable Site Selection -----
 - Sustainable Design Elements —
 - Embodied Carbon & Operational Carbon —
 - Key Metrics —
- Key Takeaways

Sustainable DCs start with Corporate Commitments (ESG)

Example Climate Action – Tech Sector Leadership

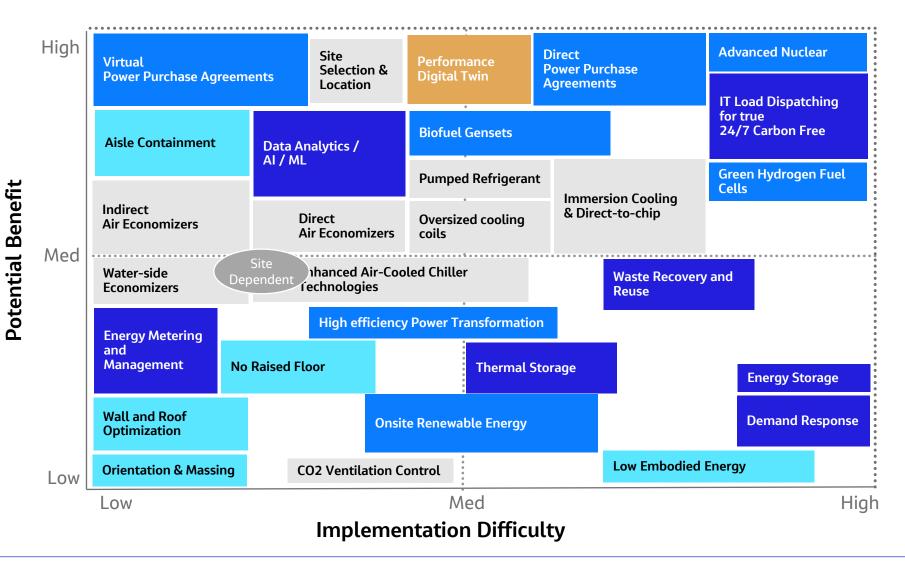
"This generation owes it to the next generation to address climate change... The time to act is very narrow, and shrinking as we go."

- Sundar Pichai, CEO of Google and Alphabet

"Climate change is real and we all share a responsibility to fight it. We will never waver, because we know that future generations depend on us." - *Tim Cook, CEO of Apple*

"The world's climate experts agree that the world must take urgent action to bring down emissions. Ultimately, we must reach "net zero" emissions, meaning that humanity must remove as much carbon as it emits each year." - Satya Nadella, CEO of Microsoft

"Climate change is a crisis we will only be able to address if we all work together on a global scale and Facebook is committed to playing its part and helping to inspire real action in our community."


- Mark Zuckerberg, CEO of Facebook

- Since 2007, carbon neutral for company operations
- Since 2017, 100% renewable energy for global operations
- By 2030, enable 5 GW of carbon-free energy for manufacturing
- By 2030, 24/7 carbon-free energy for data centres
- Since 2014, 100% renewable energy for data centres
- Since 2017, 100% renewable energy for global operations
- By 2030, carbon neutral from supply chain to the power you use in every device we make.
- By 2025, 100% Renewable Energy
- By 2030, carbon negative for company's value chain
- By 2050, removal of historical carbon footprint

- By 2020, net zero GHG emissions for global operations
- By 2030, net zero emissions for company's value chain

4 Multinational corporations are currently the main driver of change.

Data Centre Sustainability Best Practices

Operations

- Energy Management and Metering
- Data Analytics
- Artificial Intelligence & Machine-Learning
- Demand Response
- Thermal Storage
- Energy Storage
- IT Load Dispatching (24/7 Carbon Free)
- Heat Recovery
- Performance Digital Twin

Power

- Onsite Renewable Energy
- Direct Power Purchase Agreements
- Virtual Power Purchase Agreements
- Green Hydrogen Fuel Cells
- Biofuel Gensets
- High Efficiency UPS/Transformation
- Advanced Nuclear

Architectural

- Low embodied energy/water
- Orientation and massing
- Wall and Roof optimization
- No Raised Floor
- Air Containment

Cooling

- Site Selection & Location
- Indirect Air Economizers
- Direct Air Economizers
- Water-side Economizers
- Enhanced Air-Cooled Chiller Technologies
- Pumped Refrigerant
- Immersion Cooling & Direct-to-chip
- CO2 Ventilation Control
- Oversized cooling coils

Performance Digital Twin

- Value "waterfall" of system efficiencies
- Plan renewables operation strategies
- Deploy innovation virtually, limiting risk

5

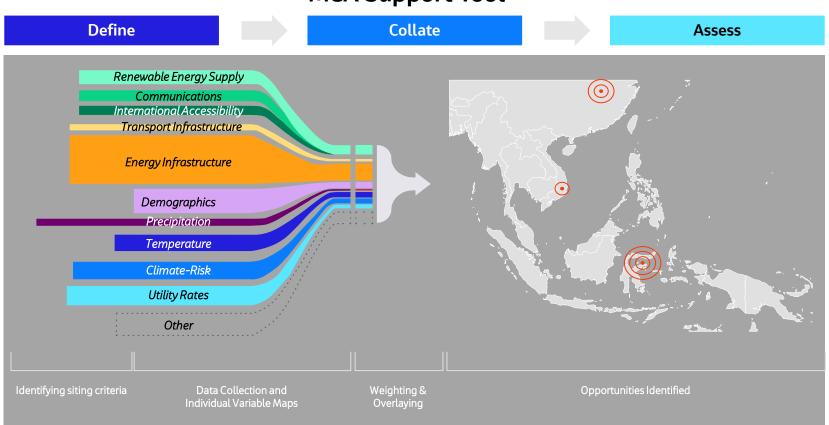
Environmental Priorities of Industry and Peers

ESG Standards and Ratings

Bold shows commonalities across table

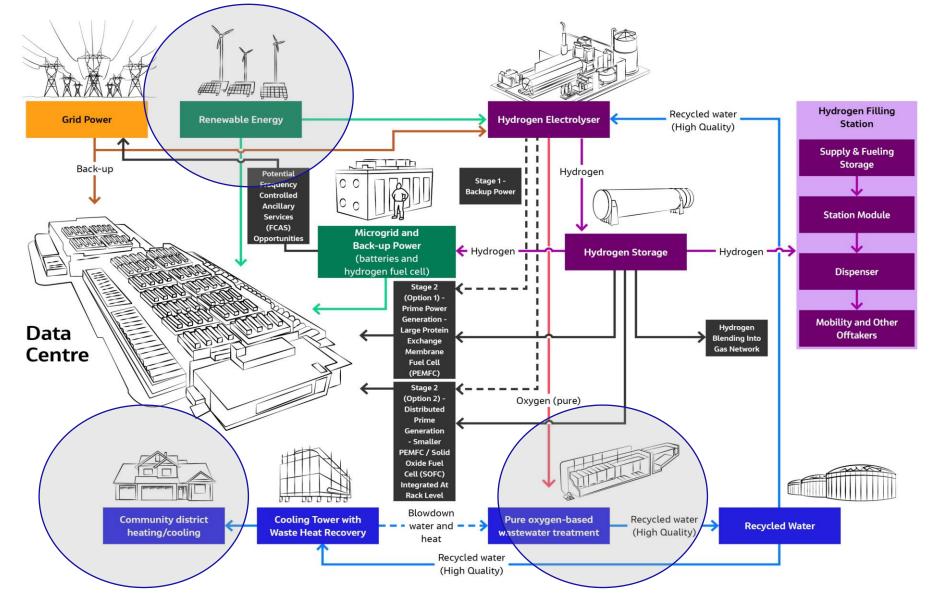
Selected Industry Peers

Client	<u>SASB</u>	<u>MSCI</u>	GRESB	<u>UN SDGs</u>	Competitor 1	Competitor 2	Client
Energy Management	Energy Management [Software]		Energy [M]	Goal 7: Affordable and Clean Energy Goal 12: Responsible Consumption and Production Goal 13: Climate Action	Energy efficiency	Energy Use/ Efficiency	Energy efficiency
100% Renewable Energy		Opportunities in Clean Tech			100% clean and renewable energy	Renewable Energy	Renewable energy
Carbon Management		Carbon Emissions	GHG Emissions [M]	Goal 11: Sustainable Cities and Communities Goal 12: Responsible Consumption and Production Goal 13: Climate Action	GHG emission	Carbon Emissions	Carbon Emissions
Water Management		Water Stress	Water inflow/withdrawals [M]	Goal 12: Responsible Consumption and Production		Water Use	Water stewardship
Waste Management		Toxic Emissions & Waste		Goal 12: Responsible Consumption and Production Goal 13: Climate Action		Waste Management	Waste reduction/ diversion
Green Buildings					Green building and material (healthy and sustainable offices)	Green Building Design	Green Buildings
						Climate Change Resilience	Resilience
			Biodiversity and Habitat [M]				Healthy ecosystems: biodiversity
							Circular economy

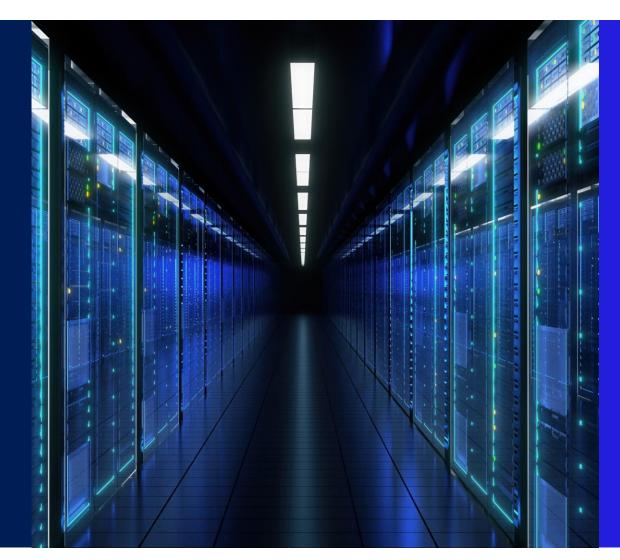

6 SASB= Sustainability Accounting Standards Board MSCI=MSCI Inc. Global ESG Standard Index GRESB= (formerly the Global Real Estate Sustainability Benchmark) is the global standard for portfolio-level ESG reporting in the real estate sector

UN SDGs= United Nations Sustainable Development Goals

©Jacobs 2022


Sustainable Site Selection

Sustainable Site Selection with a Spatially driven Multi-Criteria Analysis Framework for Access to Renewable Energy & Low Climate Risk Locations


MCA Support Tool

Hydrogen Data Centre Systems Map - Innovative colocation

Sustainable Design Elements

Data Centres Can be Large Water Consumers

- 1-MW data centre using traditional cooling methods uses about 6.75 million gallons of water per year (Uptime Inst. 2016)
- Water Usage Effectiveness (WUE) is a key measurement of water performance in data industry (The Green Grid, 2011)
 - Includes water used on-site (Source 1) and water needed to produce energy (Source 2)
 - Tradeoffs and accounting between:
 - Different sources of water (i.e. reuse/reclaimed water has less embedded energy vs surface water)
 - Embedded energy/water in chemicals used for treatment (i.e. more treatment chemicals needed = more energy/water consumed)

Social Value Creation

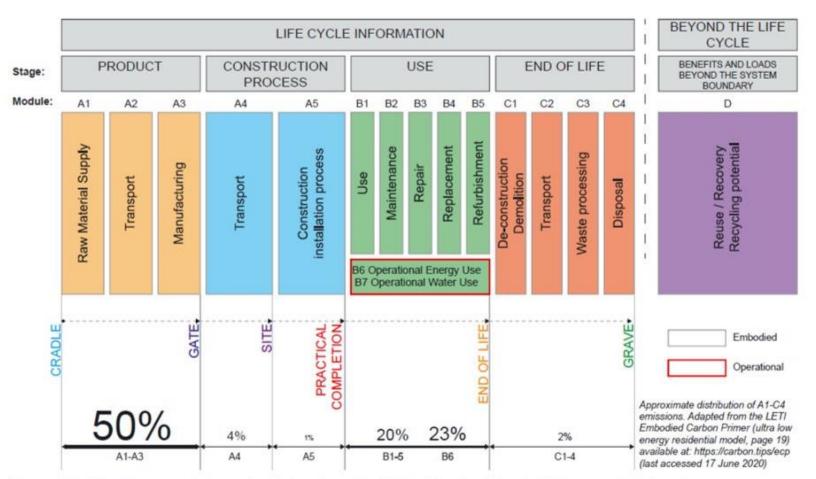
- District heating or cooling to local communities
- Free data
- Community rooftop solar for offsets
- Repurposing of buildings for future community use
- Disadvantage community employment

Physical & mental health Work

- Co-ownership
- Others?

Housing affordability

Equality & equity



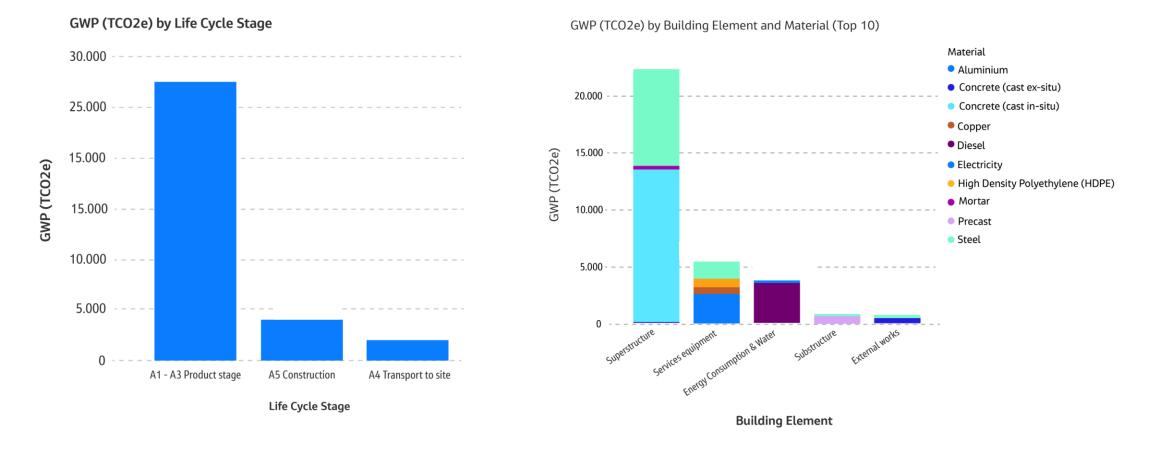
Community wellbeing

© Jacobs 2022

Mobility

Embodied Carbon

Source: A brief guide to calculating embodied carbon, July 2020 - John Orr, Orlando Gibbons and Will Arnold

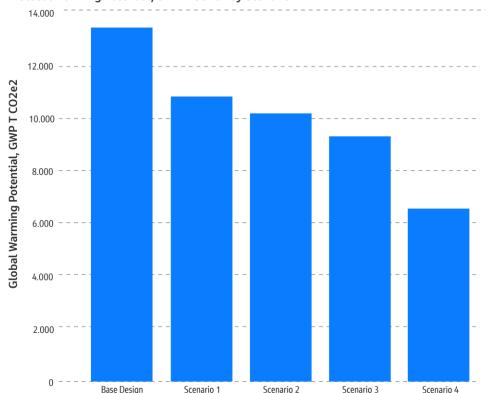

Embodied carbon

- Includes CO2

 emissions associated
 with materials,
 transportation,
 and construction
 processes throughout
 the lifetime of a
 building.
- Accounts for 11% of all carbon emissions globally

Steel from the Superstructure is the largest contributor

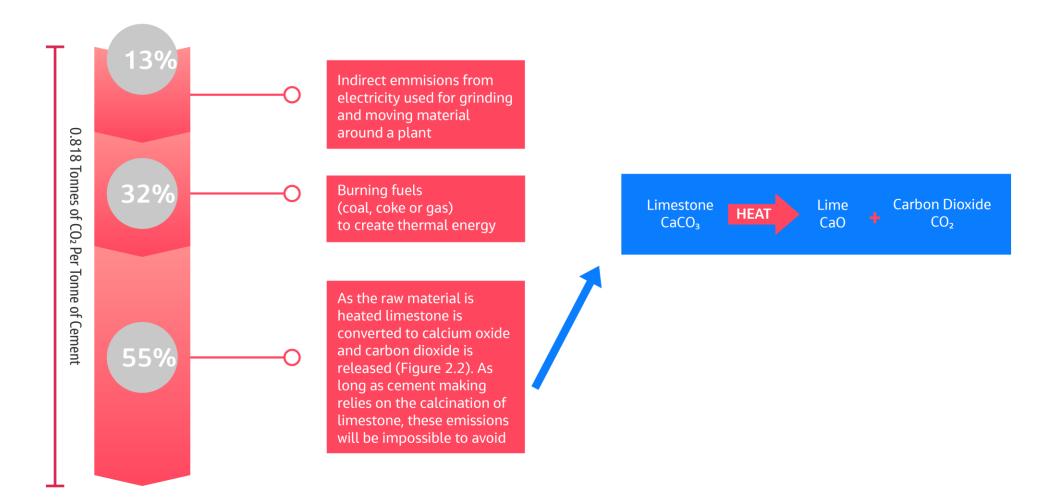
- Most of the CO₂e emissions are coming from the A1- A3 Product Stage
- Concrete and steel from superstructure building element are the major contributors


©Jacobs 2022

Potential CO₂e Reduction Scenarios for Concrete Analysis

Using low carbon impact concrete could lead to 19% to 51% reduction in carbon emission from concrete

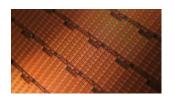
Scenario	Description	% Reduction as Compared to Base Design	
Base Design	0% SCM – 3% Recycled	_	
Scenario 1	20% SCM – 3% Recycled	≈19%	
Scenario 2	20% SCM – 10% Recycled	≈24%	
Scenario 3	20% SCM – 30% Recycled	≈31%	
Scenario 4	20% SCM – 50% Recycled	≈51%	


Good Practice in Concrete Usage in Singapore ¹				
 Semi-green concrete: 20% SCM and 10% recycled aggregates 				
 Green concrete: 20% SCM and 30% recycled aggregates 				
 Eco-concrete: 20% SCM and 50% recycled aggregates 				

Global Warming Potential, GWP T CO2e2 by Scenario

Note: SCM = Supplementary Cementitious Materials. Mainly ground granulated blast furnace slag (GGBS) and fly ash in Singapore ¹: Building and Construction Authority: A guide on Concrete Usage Index – BCA Sustainable Construction Series - 6

CO2e Release in Cement-Making



Supplementary Cementitious Materials

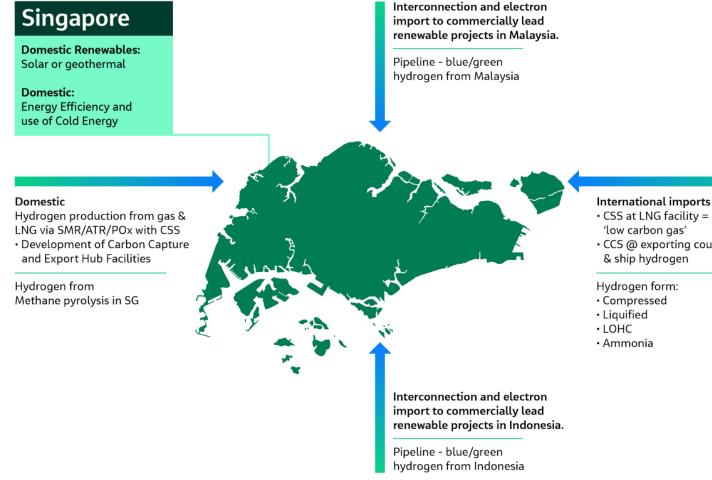
 Geopolymer concrete is concrete made from synthetic materials in the place of Ordinary Portland Cement (OPC), typically:

Fly ash By-product of coal fired power plants

Slag / Ground Granulated Blast Furnace Slag (GGBFS) By-product of iron/steel manufacturing process

Silica fume

By-product of the induction arc furnaces in the silicon metal and ferrosilicon alloy industries.


Metakaolin

Derived from clay soils or mining waste

Property Comparison: Geopolymer vs Conventional Concrete

Property	Geopolymer versus Conventional Concrete	Property	Geopolymer versus Conventional Concrete	
Compressive Strength	Similar, heigher rate of early strengt gain	Fire Resistance	More resistant	
Tensile Strength	Indirect tensile strength typically higher for similar compressive strength	Freeze-Thaw Durability	More durable	
Flexural Strength	Similar to higher depending on alkali activator, higher	Volume of Permeable Voids	Varies depending on mix proportions; higher	
	rate of early strength gain	Water Absorbtion	Similar	
Modulus Elasticity	Typically lower	Rapid Chloride Permeability	Lower to similar depending on mix proportions	
Density	Similar to lower	Corrosion Rate of Embeded Steel	Limited research, particularly filed exposure, prevents conclusive comparison	
Poisson's Ratio	Typically lower or similar			
Shrinkage	Lower to similar	Sorptivity	Higher	
Creep Coefficient	Lower	Sulphate Resistance	Somewhat higher, depends on cation	
Bond Strength to Reinforcement	Similar for similar compressive strengths; higher compressive strengths	Acid Resisiance	More resistant to organic and inorganic acid attack	
Carbonation Coefficient	Higher	-		
Chloride Diffusion Coefficient	Lower (migration test); lower (core test)	Alkali-Silica Reaction Susceptibility	Variable based on limited research	

Operational Carbon Management: Evaluating Low-Carbon Energy Options for Singapore

CCS @ exporting country

© Jacobs 2022

Stakeholder Engagement for developing and managing commitments Example Stakeholders Involved in Low-Carbon Energy in Singapore

Replacing Diesel Generators with Fuel Cells

Example: *Microsoft pilots a hydrogen fuel cell system in New York.*

https://news.microsof t.com/innovationstories/hydrogenfuel-cells-couldprovide-emissionfree-backup-powerat-datacentersmicrosoft-says/

Key Takeaways

- Sustainable data centres start with strong Corporate ESG
- Sustainable Site Selection & Design are key to achieving KPIs
- Finding low-carbon energy can be a challenge but there is much progress being made

Questions?

